Displaying 101 – 120 of 400

Showing per page

Extraresolvability and cardinal arithmetic

Ofelia Teresa Alas, Salvador García-Ferreira, Artur Hideyuki Tomita (1999)

Commentationes Mathematicae Universitatis Carolinae

Following Malykhin, we say that a space X is extraresolvable if X contains a family 𝒟 of dense subsets such that | 𝒟 | > Δ ( X ) and the intersection of every two elements of 𝒟 is nowhere dense, where Δ ( X ) = min { | U | : U is a nonempty open subset of X } is the dispersion character of X . We show that, for every cardinal κ , there is a compact extraresolvable space of size and dispersion character 2 κ . In connection with some cardinal inequalities, we prove the equivalence of the following statements: 1) 2 κ < 2 κ + , 2) ( κ + ) κ is extraresolvable and...

Extraresolvability of balleans

Igor V. Protasov (2007)

Commentationes Mathematicae Universitatis Carolinae

A ballean is a set endowed with some family of balls in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. We introduce and study a new cardinal invariant of a ballean, the extraresolvability, which is an asymptotic reflection of the corresponding invariant of a topological space.

First countable spaces without point-countable π-bases

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2007)

Fundamenta Mathematicae

We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by showing that ∙ there is a ZFC example of a first countable, 0-dimensional Hausdorff space with no point-countable π-base (in fact, the minimum order of a π-base of the space can be made arbitrarily large); ∙ if there is a κ-Suslin line then there is a first countable GO-space of cardinality κ⁺ in which the order of any π-base is at least κ; ∙ it is consistent to have a first countable,...

Forcing countable networks for spaces satisfying R ( X ω ) = ω

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (1996)

Commentationes Mathematicae Universitatis Carolinae

We show that all finite powers of a Hausdorff space X do not contain uncountable weakly separated subspaces iff there is a c.c.c poset P such that in V P X is a countable union of 0 -dimensional subspaces of countable weight. We also show that this...

Forcing tightness in products of fans

Jörg Brendle, Tim La Berge (1996)

Fundamenta Mathematicae

We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.

Function spaces and local properties

Ziqin Feng, Paul Gartside (2013)

Fundamenta Mathematicae

Necessary conditions and sufficient conditions are given for C p ( X ) to be a (σ-) m₁- or m₃-space. (A space is an m₁-space if each of its points has a closure-preserving local base.) A compact uncountable space K is given with C p ( K ) an m₁-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying methods of functionally...

Further remarks on KC and related spaces

Angelo Bella, Camillo Costantini (2011)

Commentationes Mathematicae Universitatis Carolinae

A topological space is KC when every compact set is closed and SC when every convergent sequence together with its limit is closed. We present a complete description of KC-closed, SC-closed and SC minimal spaces. We also discuss the behaviour of the finite derived set property in these classes.

G δ -modification of compacta and cardinal invariants

Aleksander V. Arhangel'skii (2006)

Commentationes Mathematicae Universitatis Carolinae

Given a space X , its G δ -subsets form a basis of a new space X ω , called the G δ -modification of X . We study how the assumption that the G δ -modification X ω is homogeneous influences properties of X . If X is first countable, then X ω is discrete and, hence, homogeneous. Thus, X ω is much more often homogeneous than X itself. We prove that if X is a compact Hausdorff space of countable tightness such that the G δ -modification of X is homogeneous, then the weight w ( X ) of X does not exceed 2 ω (Theorem 1). We also establish...

Currently displaying 101 – 120 of 400