Displaying 121 – 140 of 400

Showing per page

H-closed extensions with countable remainder

Daniel K. McNeill (2012)

Commentationes Mathematicae Universitatis Carolinae

This paper investigates necessary and sufficient conditions for a space to have an H-closed extension with countable remainder. For countable spaces we are able to give two characterizations of those spaces admitting an H-closed extension with countable remainder. The general case is more difficult, however, we arrive at a necessary condition — a generalization of Čech completeness, and several sufficient conditions for a space to have an H-closed extension with countable remainder. In particular,...

Ideal Banach category theorems and functions

Zbigniew Piotrowski (1997)

Mathematica Bohemica

Based on some earlier findings on Banach Category Theorem for some “nice” σ -ideals by J. Kaniewski, D. Rose and myself I introduce the h operator ( h stands for “heavy points”) to refine and generalize kernel constructions of A. H. Stone. Having obtained in this way a generalized Kuratowski’s decomposition theorem I prove some characterizations of the domains of functions having “many” points of h -continuity. Results of this type lead, in the case of the σ -ideal of meager sets, to important statements...

Ideal independence, free sequences, and the ultrafilter number

Kevin Selker (2015)

Commentationes Mathematicae Universitatis Carolinae

We make use of a forcing technique for extending Boolean algebras. The same type of forcing was employed in Baumgartner J.E., Komjáth P., Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125–133, Koszmider P., Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117, and elsewhere. Using and modifying a lemma of Koszmider, and using CH, we obtain an atomless BA, A such that 𝔣 ( A ) = s mm ( A ) < 𝔲 ( A ) , answering questions raised by Monk...

Imposing psendocompact group topologies on Abeliau groups

W. Comfort, I. Remus (1993)

Fundamenta Mathematicae

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m ( α ) 2 α . We show:    Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m ( α ) r 0 ( G ) γ 2 α , or α > ω and α ω r 0 ( G ) 2 α , then G admits a pseudocompact group topology of weight α.  Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies r 0 ( G ) m ( α ) .  Theorem 5.2(b). If G is divisible Abelian with 2 r 0 ( G ) γ , then G admits at most 2 γ -many...

Infinite games and chain conditions

Santi Spadaro (2016)

Fundamenta Mathematicae

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf number of the G δ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak Lindelöf...

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

Interpolation of κ -compactness and PCF

István Juhász, Zoltán Szentmiklóssy (2009)

Commentationes Mathematicae Universitatis Carolinae

We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let Φ ( μ , κ , λ ) denote the following statement: μ < κ < λ = cf ( λ ) and there is { S ξ : ξ < λ } [ κ ] μ such that | { ξ : | S ξ A | = μ } | < λ whenever A [ κ ] < κ . We show that if Φ ( μ , κ , λ ) holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce Φ ( cf ( κ ) , κ , κ + ) for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and ω -compact space is uncountably compact, that is κ -compact for all uncountable cardinals κ .

Irresolvable countable spaces of weight less than

Viacheslav I. Malykhin (1999)

Commentationes Mathematicae Universitatis Carolinae

We construct in Bell-Kunen’s model: (a) a group maximal topology on a countable infinite Boolean group of weight 1 < and (b) a countable irresolvable dense subspace of 2 ω 1 . In this model = ω 1 .

Is the product of ccc spaces a ccc space?

Nina M. Roy (1989)

Publicacions Matemàtiques

In this expository paper it is shown that Martin's Axiom and the negation of the Continuum Hypothesis imply that the product of ccc spaces is a ccc space. The Continuum Hypothesis is then used to construct the Laver-Gavin example of two ccc spaces whose product is not a ccc space.

Isomorphism Problems for the Baire Function Spaces of Topological Spaces

Choban, Mitrofan (1998)

Serdica Mathematical Journal

Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first...

I-weight of compact and locally compact LOTS

Brad Bailey (2007)

Commentationes Mathematicae Universitatis Carolinae

Ram’ırez-Páramo proved that under GCH for the class of compact Hausdorff spaces i-weight reflects all cardinals [A reflection theorem for i-weight, Topology Proc. 28 (2004), no. 1, 277–281]. We show that in ZFC i-weight reflects all cardinals for the class of compact LOTS. We define local i-weight, then calculate i-weight of locally compact LOTS and paracompact spaces in terms of the extent of the space and the i-weight of open sets or the local i-weight. For locally compact LOTS we find a necessary...

Currently displaying 121 – 140 of 400