Displaying 161 – 180 of 1009

Showing per page

Closed subsets of absolutely star-Lindelöf spaces II

Yan-Kui Song (2003)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove the following two statements: (1) There exists a discretely absolutely star-Lindelöf Tychonoff space having a regular-closed subspace which is not CCC-Lindelöf. (2) Every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented in a Hausdorff (regular, Tychonoff) absolutely star-Lindelöf space as a closed G δ subspace.

Cofinal completeness of the Hausdorff metric topology

Gerald Beer, Giuseppe Di Maio (2010)

Fundamenta Mathematicae

A net in a Hausdorff uniform space is called cofinally Cauchy if for each entourage, there exists a cofinal (rather than residual) set of indices whose corresponding terms are pairwise within the entourage. In a metric space equipped with the associated metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary and sufficient conditions for the nonempty closed subsets of the...

Coherent and strong expansions of spaces coincide

Sibe Mardešić (1998)

Fundamenta Mathematicae

In the existing literature there are several constructions of the strong shape category of topological spaces. In the one due to Yu. T. Lisitsa and S. Mardešić [LM1-3] an essential role is played by coherent polyhedral (ANR) expansions of spaces. Such expansions always exist, because every space admits a polyhedral resolution, resolutions are strong expansions and strong expansions are always coherent. The purpose of this paper is to prove that conversely, every coherent polyhedral (ANR) expansion...

Coincidence of Vietoris and Wijsman Topologies: A New Proof

Holá, L’. (1997)

Serdica Mathematical Journal

Let (X, d) be a metric space and CL(X) the family of all nonempty closed subsets of X. We provide a new proof of the fact that the coincidence of the Vietoris and Wijsman topologies induced by the metric d forces X to be a compact space. In the literature only a more involved and indirect proof using the proximal topology is known. Here we do not need this intermediate step. Moreover we prove that (X, d) is boundedly compact if and only if the bounded Vietoris and Wijsman topologies on CL(X) coincide....

Compact spaces that do not map onto finite products

Antonio Avilés (2009)

Fundamenta Mathematicae

We provide examples of nonseparable compact spaces with the property that any continuous image which is homeomorphic to a finite product of spaces has a maximal prescribed number of nonseparable factors.

Compactness of Powers of ω

Paolo Lipparini (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We characterize exactly the compactness properties of the product of κ copies of the space ω with the discrete topology. The characterization involves uniform ultrafilters, infinitary languages, and the existence of nonstandard elements in elementary extensions. We also have results involving products of possibly uncountable regular cardinals.

Completely regular spaces

H. L. Bentley, Eva Lowen-Colebunders (1991)

Commentationes Mathematicae Universitatis Carolinae

We conduct an investigation of the relationships which exist between various generalizations of complete regularity in the setting of merotopic spaces, with particular attention to filter spaces such as Cauchy spaces and convergence spaces. Our primary contribution consists in the presentation of several counterexamples establishing the divergence of various such generalizations of complete regularity. We give examples of: (1) a contigual zero space which is not weakly regular and is not a Cauchy...

Currently displaying 161 – 180 of 1009