Weak contractibility and hyperspaces
We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.
We demonstrate that every Vietoris continuous selection for the hyperspace of at most 3-point subsets implies the existence of a continuous selection for the hyperspace of at most 4-point subsets. However, in general, we do not know if such ``extensions'' are possible for hyperspaces of sets of other cardinalities. In particular, we do not know if the hyperspace of at most 3-point subsets has a continuous selection provided the hyperspace of at most 2-point subsets has a continuous selection.
It is proved that for a zero-dimensional space , the function space has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space , the function space is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial...
It is shown that certain weak-base structures on a topological space give a -space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are -spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space is a -space hereditarily. Hence, quotient mappings, with compact fibers, from metric spaces have a -space image. What about quotient -mappings? Arhangel’skii and Buzyakova have shown that...
Let M be a metrizable group. Let G be a dense subgroup of . We prove that if G is domain representable, then . The following corollaries answer open questions. If X is completely regular and is domain representable, then X is discrete. If X is zero-dimensional, T₂, and is subcompact, then X is discrete.
Let be a finite graph. Let be the hyperspace of all nonempty subcontinua of and let be a Whitney map. We prove that there exist numbers such that if , then the Whitney block is homeomorphic to the product . We also show that there exists only a finite number of topologically different Whitney levels for .
It is shown that there is no Whitney map on the hyperspace for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).
We prove the following results. (i) Let X be a continuum such that X contains a dense arc component and let D be a dendrite with a closed set of branch points. If f:X → D is a Whitney preserving map, then f is a homeomorphism. (ii) For each dendrite D' with a dense set of branch points there exist a continuum X' containing a dense arc component and a Whitney preserving map f':X' → D' such that f' is not a homeomorphism.
Given a metric space ⟨X,ρ⟩, consider its hyperspace of closed sets CL(X) with the Wijsman topology . It is known that is metrizable if and only if X is separable, and it is an open question by Di Maio and Meccariello whether this is equivalent to being normal. We prove that if the weight of X is a regular uncountable cardinal and X is locally separable, then is not normal. We also solve some questions by Cao, Junnila and Moors regarding isolated points in Wijsman hyperspaces.