Page 1 Next

Displaying 1 – 20 of 81

Showing per page

T 2 and T 3 objects at p in the category of proximity spaces

Muammer Kula, Samed Özkan (2020)

Mathematica Bohemica

In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point p in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various Pre T 2 , T i , i = 0 , 1 , 2 , 3 , structures at a point p are investigated. Finally, we examine the relationships between the generalized separation...

Tanaka spaces and products of sequential spaces

Yoshio Tanaka (2007)

Commentationes Mathematicae Universitatis Carolinae

We consider properties of Tanaka spaces (introduced in Mynard F., More on strongly sequential spaces, Comment. Math. Univ. Carolin. 43 (2002), 525–530), strongly sequential spaces, and weakly sequential spaces. Applications include product theorems for these types of spaces.

The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces.

Taras Banakh, Anatolij Plichko (2006)

RACSAM

Answering a question of Halbeisen we prove (by two different methods) that the algebraic dimension of each infinite-dimensional complete linear metric space X equals the size of X. A topological method gives a bit more: the algebraic dimension of a linear metric space X equals |X| provided the hyperspace K(X) of compact subsets of X is a Baire space. Studying the interplay between Baire properties of a linear metric space X and its hyperspace, we construct a hereditarily Baire linear metric space...

The AR-Property of the spaces of closed convex sets

Katsuro Sakai, Masato Yaguchi (2006)

Colloquium Mathematicae

Let C o n v H ( X ) , C o n v A W ( X ) and C o n v W ( X ) be the spaces of all non-empty closed convex sets in a normed linear space X admitting the Hausdorff metric topology, the Attouch-Wets topology and the Wijsman topology, respectively. We show that every component of C o n v H ( X ) and the space C o n v A W ( X ) are AR. In case X is separable, C o n v W ( X ) is locally path-connected.

The Baire property in remainders of topological groups and other results

Aleksander V. Arhangel'skii (2009)

Commentationes Mathematicae Universitatis Carolinae

It is established that a remainder of a non-locally compact topological group G has the Baire property if and only if the space G is not Čech-complete. We also show that if G is a non-locally compact topological group of countable tightness, then either G is submetrizable, or G is the Čech-Stone remainder of an arbitrary remainder Y of G . It follows that if G and H are non-submetrizable topological groups of countable tightness such that some remainders of G and H are homeomorphic, then the spaces...

The category of compactifications and its coreflections

Anthony W. Hager, Brian Wynne (2022)

Commentationes Mathematicae Universitatis Carolinae

We define “the category of compactifications”, which is denoted CM, and consider its family of coreflections, denoted corCM. We show that corCM is a complete lattice with bottom the identity and top an interpretation of the Čech–Stone β . A c corCM implies the assignment to each locally compact, noncompact Y a compactification minimum for membership in the “object-range” of c . We describe the minimum proper compactifications of locally compact, noncompact spaces, show that these generate the atoms...

The category of uniform spaces as a completion of the category of metric spaces

Jiří Adámek, Jan Reiterman (1992)

Commentationes Mathematicae Universitatis Carolinae

A criterion for the existence of an initial completion of a concrete category 𝐊 universal w.r.tḟinite products and subobjects is presented. For 𝐊 = metric spaces and uniformly continuous maps this completion is the category of uniform spaces.

Currently displaying 1 – 20 of 81

Page 1 Next