Recurrent functions on compact spaces.
We say that a cardinal function reflects an infinite cardinal , if given a topological space with , there exists with . We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with...
We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω₁-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every compact Hausdorff space without non-trivial converging ω₁-sequences is first-countable and, in addition,...
We consider the property of relative compactness of subspaces of Hausdorff spaces. Several examples of relatively compact spaces are given. We prove that the property of being a relatively compact subspace of a Hausdorff spaces is strictly stronger than being a regular space and strictly weaker than being a Tychonoff space.
A space is said to be nearly pseudocompact iff is dense in . In this paper relatively realcompact sets are defined, and it is shown that a space is nearly pseudocompact iff every relatively realcompact open set is relatively compact. Other equivalences of nearly pseudocompactness are obtained and compared to some results of Blair and van Douwen.
In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product , where 2 is 2 = 0,1 with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets of X, where X = ω,ℝ. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.
We say that a collection of subsets of has property if there is a set and point-countable collections of closed subsets of such that for any there is a finite subcollection of such that . Then we prove that any compact space is Corson if and only if it has a point-- base. A characterization of Corson compacta in terms of (strong) point network is also given. This provides an answer to an open question in “A Biased View of Topology as a Tool in Functional Analysis” (2014) by...
We define and investigate a generalization of the notion of convex compacta. Namely, for semiconvex combination in a semiconvex compactum we allow the existence of non-trivial loops connecting a point with itself. It is proved that any semiconvex compactum contains two non-empty convex compacta, the center and the weak center. The center is the largest compactum such that semiconvex combination induces a convex structure on it. The convex structure on the weak center does not necessarily coincide...
The general question of when a countably compact topological space is sequentially compact, or has a nontrivial convergent sequence, is studied from the viewpoint of basic cardinal invariants and small uncountable cardinals. It is shown that the small uncountable cardinal 𝔥 is both the least cardinality and the least net weight of a countably compact space that is not sequentially compact, and that it is also the least hereditary Lindelöf degree in most published models. Similar results, some definitive,...
We present short and elementary proofs of the following two known theorems in General Topology: (i) [H. Wicke and J. Worrell] A weakly -refinable countably compact space is compact. (ii) [A. Ostaszewski] A compact Hausdorff space which is a countable union of metrizable spaces is sequential.
Given a subbase of a space , the game is defined for two players and who respectively pick, at the -th move, a point and a set such that . The game stops after the moves have been made and the player wins if ; otherwise is the winner. Since is an evident modification of the well-known point-open game , the primary line of research is to describe the relationship between and for a given subbase . It turns out that, for any subbase , the player has a winning strategy...