Displaying 101 – 120 of 386

Showing per page

Connected LCA groups are sequentially connected

Shou Lin, Mihail G. Tkachenko (2013)

Commentationes Mathematicae Universitatis Carolinae

We prove that every connected locally compact Abelian topological group is sequentially connected, i.e., it cannot be the union of two proper disjoint sequentially closed subsets. This fact is then applied to the study of extensions of topological groups. We show, in particular, that if H is a connected locally compact Abelian subgroup of a Hausdorff topological group G and the quotient space G / H is sequentially connected, then so is G .

Continuous images and other topological properties of Valdivia compacta

Ondřej Kalenda (1999)

Fundamenta Mathematicae

We study topological properties of Valdivia compact spaces. We prove in particular that a compact Hausdorff space K is Corson provided each continuous image of K is a Valdivia compactum. This answers a question of M. Valdivia (1997). We also prove that the class of Valdivia compacta is stable with respect to arbitrary products and we give a generalization of the fact that Corson compacta are angelic.

Convergence in compacta and linear Lindelöfness

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (1998)

Commentationes Mathematicae Universitatis Carolinae

Let X be a compact Hausdorff space with a point x such that X { x } is linearly Lindelöf. Is then X first countable at x ? What if this is true for every x in X ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when X is, in addition, ω -monolithic. We also prove that if X is compact, Hausdorff, and X { x } is strongly discretely Lindelöf, for every x in X , then X is first countable. An example of linearly Lindelöf...

Countable Compact Scattered T₂ Spaces and Weak Forms of AC

Kyriakos Keremedis, Evangelos Felouzis, Eleftherios Tachtsis (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that: (1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T₂ topological space is zero-dimensional. (2) If every countable union of countable sets of reals is countable, then a countable compact T₂ space is scattered iff it is metrizable. (3) If the real line ℝ can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T₂ space...

Countable compactness and p -limits

Salvador García-Ferreira, Artur Hideyuki Tomita (2001)

Commentationes Mathematicae Universitatis Carolinae

For M ω * , we say that X is quasi M -compact, if for every f : ω X there is p M such that f ¯ ( p ) X , where f ¯ is the Stone-Čech extension of f . In this context, a space X is countably compact iff X is quasi ω * -compact. If X is quasi M -compact and M is either finite or countable discrete in ω * , then all powers of X are countably compact. Assuming C H , we give an example of a countable subset M ω * and a quasi M -compact space X whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi...

Countable products of spaces of finite sets

Antonio Avilés (2005)

Fundamenta Mathematicae

We consider the compact spaces σₙ(Γ) of subsets of Γ of cardinality at most n and their countable products. We give a complete classification of their Banach spaces of continuous functions and a partial topological classification.

Countably z-compact spaces

A.T. Al-Ani (2014)

Archivum Mathematicum

In this work we study countably z-compact spaces and z-Lindelof spaces. Several new properties of them are given. It is proved that every countably z-compact space is pseuodocompact (a space on which every real valued continuous function is bounded). Spaces which are countably z-compact but not countably compact are given. It is proved that a space is countably z-compact iff every countable z-closed set is compact. Characterizations of countably z-compact and z-Lindelof spaces by multifunctions...

Counting linearly ordered spaces

Gerald Kuba (2014)

Colloquium Mathematicae

For a transfinite cardinal κ and i ∈ 0,1,2 let i ( κ ) be the class of all linearly ordered spaces X of size κ such that X is totally disconnected when i = 0, the topology of X is generated by a dense linear ordering of X when i = 1, and X is compact when i = 2. Thus every space in ℒ₁(κ) ∩ ℒ₂(κ) is connected and hence ℒ₁(κ) ∩ ℒ₂(κ) = ∅ if κ < 2 , and ℒ₀(κ) ∩ ℒ₁(κ) ∩ ℒ₂(κ) = ∅ for arbitrary κ. All spaces in ℒ₁(ℵ₀) are homeomorphic, while ℒ₂(ℵ₀) contains precisely ℵ₁ spaces up to homeomorphism. The class ℒ₁(κ)...

Currently displaying 101 – 120 of 386