La complétion universelle d'un produit d'espaces complètement réguliers
The cardinal functions of pseudocharacter, closed pseudocharacter, and character are used to examine H-closed spaces and to contrast the differences between H-closed and minimal Hausdorff spaces. An H-closed space is produced with the properties that and .
For a Tychonoff space , is the lattice-ordered group (-group) of real-valued continuous functions on , and is the sub--group of bounded functions. A property that might have is (AP) whenever is a divisible sub--group of , containing the constant function 1, and separating points from closed sets in , then any function in can be approximated uniformly over by functions which are locally in . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...