Page 1 Next

Displaying 1 – 20 of 52

Showing per page

Cardinal invariants and compactifications

Anatoly A. Gryzlov (1994)

Commentationes Mathematicae Universitatis Carolinae

We prove that every compact space X is a Čech-Stone compactification of a normal subspace of cardinality at most d ( X ) t ( X ) , and some facts about cardinal invariants of compact spaces.

Čech complete nearness spaces

H. L. Bentley, Worthen N. Hunsaker (1992)

Commentationes Mathematicae Universitatis Carolinae

We study Čech complete and strongly Čech complete topological spaces, as well as extensions of topological spaces having these properties. Since these two types of completeness are defined by means of covering properties, it is quite natural that they should have a convenient formulation in the setting of nearness spaces and that in that setting these formulations should lead to new insights and results. Our objective here is to give an internal characterization of (and to study) those nearness...

Čech-completeness and ultracompleteness in “nice spaces”

Miguel López de Luna, Vladimir Vladimirovich Tkachuk (2002)

Commentationes Mathematicae Universitatis Carolinae

We prove that if X n is a union of n subspaces of pointwise countable type then the space X is of pointwise countable type. If X ω is a countable union of ultracomplete spaces, the space X ω is ultracomplete. We give, under CH, an example of a Čech-complete, countably compact and non-ultracomplete space, giving thus a partial answer to a question asked in [BY2].

Čech-Stone-like compactifications for general topological spaces

Miroslav Hušek (1992)

Commentationes Mathematicae Universitatis Carolinae

The problem whether every topological space X has a compactification Y such that every continuous mapping f from X into a compact space Z has a continuous extension from Y into Z is answered in the negative. For some spaces X such compactifications exist.

Closed embeddings into complements of Σ -products

Aleksander V. Arhangel'skii, Miroslav Hušek (2008)

Commentationes Mathematicae Universitatis Carolinae

In some sense, a dual property to that of Valdivia compact is considered, namely the property to be embedded as a closed subspace into a complement of a Σ -subproduct of a Tikhonov cube. All locally compact spaces are co-Valdivia spaces (and only those among metrizable spaces or spaces having countable type). There are paracompact non-locally compact co-Valdivia spaces. A possibly new type of ultrafilters lying in between P-ultrafilters and weak P-ultrafilters is introduced. Under Martin axiom and...

Closed subsets of absolutely star-Lindelöf spaces II

Yan-Kui Song (2003)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove the following two statements: (1) There exists a discretely absolutely star-Lindelöf Tychonoff space having a regular-closed subspace which is not CCC-Lindelöf. (2) Every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented in a Hausdorff (regular, Tychonoff) absolutely star-Lindelöf space as a closed G δ subspace.

Coarse dimensions and partitions of unity.

N. Brodskiy, J. Dydak (2008)

RACSAM

Gromov and Dranishnikov introduced asymptotic and coarse dimensions of proper metric spaces via quite different ways. We define coarse and asymptotic dimension of all metric spaces in a unified manner and we investigate relationships between them generalizing results of Dranishnikov and Dranishnikov-Keesling-Uspienskij.

Coarse structures and group actions

N. Brodskiy, J. Dydak, A. Mitra (2008)

Colloquium Mathematicae

The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a...

Currently displaying 1 – 20 of 52

Page 1 Next