-regular Cauchy completions.
Perfect compactifications of frames are introduced. It is shown that the Stone-Čech compactification is an example of such a compactification. We also introduce rim-compact frames and for such frames we define its Freudenthal compactification, another example of a perfect compactification. The remainder of a rim-compact frame in its Freudenthal compactification is shown to be zero-dimensional. It is shown that with the assumption of the Boolean Ultrafilter Theorem the Freudenthal compactification...
We prove that the maximal Hausdorff compactification of a -compactifiable mapping and the maximal Tychonoff compactification of a Tychonoff mapping (see [P]) are perfect. This allows us to give a characterization of all perfect Hausdorff (respectively, all perfect Tychonoff) compactifications of a -compactifiable (respectively, of a Tychonoff) mapping, which is a generalization of two results of Skljarenko [S] for the Hausdorff compactifications of Tychonoff spaces.
The following general question is considered. Suppose that is a topological group, and , are subspaces of such that . Under these general assumptions, how are the properties of and related to the properties of ? For example, it is observed that if is closed metrizable and is compact, then is a paracompact -space. Furthermore, if is closed and first countable, is a first countable compactum, and , then is also metrizable. Several other results of this kind are obtained....
We provide a necessary and sufficient condition for the Higson compactification to be perfect for the noncompact, locally connected, proper metric spaces. We also discuss perfectness of the Smirnov compactification.
If a metrizable space is dense in a metrizable space , then is called a metric extension of . If and are metric extensions of and there is a continuous map of into keeping pointwise fixed, we write . If is noncompact and metrizable, then denotes the set of metric extensions of , where and are identified if and , i.e., if there is a homeomorphism of onto keeping pointwise fixed. is a large complicated poset studied extensively by V. Bel’nov [The structure of...