Semi-radiality in products.
The general question of when a countably compact topological space is sequentially compact, or has a nontrivial convergent sequence, is studied from the viewpoint of basic cardinal invariants and small uncountable cardinals. It is shown that the small uncountable cardinal 𝔥 is both the least cardinality and the least net weight of a countably compact space that is not sequentially compact, and that it is also the least hereditary Lindelöf degree in most published models. Similar results, some definitive,...
A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.
For any a countable sequential topological group of sequential order α is constructed using CH.
We present short and elementary proofs of the following two known theorems in General Topology: (i) [H. Wicke and J. Worrell] A weakly -refinable countably compact space is compact. (ii) [A. Ostaszewski] A compact Hausdorff space which is a countable union of metrizable spaces is sequential.
We obtain some new properties of the class of KC-spaces, that is, those topological spaces in which compact sets are closed. The results are used to generalize theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in the lattice of -topologies on a set .
The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.