On bicompacta which are unions of two subspaces of a certain type
In this note we show the following theorem: “Let be an almost -discrete space, where is a regular cardinal. Then is -Baire iff it is a -Baire space and every point- open cover of such that is locally- at a dense set of points.” For we obtain a well-known characterization of Baire spaces. The case is also discussed.
We show that if T is an uncountable Polish space, 𝓧 is a metrizable space and f:T→ 𝓧 is a weakly Baire measurable function, then we can find a meagre set M ⊆ T such that f[T∖M] is a separable space. We also give an example showing that "metrizable" cannot be replaced by "normal".