Semicontinuity of maps which are limits of sequences of quasi-continuous maltivalued maps
Page 1 Next
J. Ewert (1987)
Matematički Vesnik
Viakalathur S. Krishnan (1970/1971)
Séminaire Dubreil. Algèbre et théorie des nombres
Pu, H.W., Pu, H.H. (1974)
Portugaliae mathematica
Errikos Papatriantafillou (1971)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
James M. Irwin, Darrell C. Kent (1979)
Mathematica Slovaca
Horst Herrlich (1988)
Commentationes Mathematicae Universitatis Carolinae
Vilímovský, Jiří (1978)
Seminar Uniform Spaces
Jiří Vilímovský (1980)
Czechoslovak Mathematical Journal
Császár, Á., Deák, J. (1991)
Mathematica Pannonica
Császár, Á., Deák, J. (1992)
Mathematica Pannonica
Császár, Á., Deák, J. (1991)
Mathematica Pannonica
Császár, Á., Deák, J. (1990)
Mathematica Pannonica
John Boris Miller (1975)
Compositio Mathematica
M. Hušek, V. Trnková (1994)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Memudu Olatinwo (2008)
Open Mathematics
In this paper, we establish some common fixed point theorems for selfmappings of a uniform space by employing both the concepts of an A-distance and an E-distance introduced by Aamri and El Moutawakil [1] and two contractive conditions of integral type. Our results are generalizations and extensions of the classical Banach’s fixed point theorem of [2, 3, 19], some results of Aamri and El Moutawakil [1], Theorem 2.1 of Branciari [5] as well as a result of Jungck [7].
Umberto Marconi (1993)
Commentationes Mathematicae Universitatis Carolinae
Let be a uniform space of uniform weight . It is shown that if every open covering, of power at most , is uniform, then is fine. Furthermore, an -metric space is fine, provided that every finite open covering is uniform.
W. Kulpa (1979)
Fundamenta Mathematicae
Turkoglu, Duran, Binbasioglu, Demet (2011)
Fixed Point Theory and Applications [electronic only]
Frolík, Zdeněk (1976)
Seminar Uniform Spaces
Gerhard Preuß (1983)
Monatshefte für Mathematik
Page 1 Next