Displaying 161 – 180 of 453

Showing per page

Menger curvature and Lipschitz parametrizations in metric spaces

Immo Hahlomaa (2005)

Fundamenta Mathematicae

We show that pointwise bounds on the Menger curvature imply Lipschitz parametrization for general compact metric spaces. We also give some estimates on the optimal Lipschitz constants of the parametrizing maps for the metric spaces in Ω(ε), the class of bounded metric spaces E such that the maximum angle for every triple in E is at least π/2 + arcsinε. Finally, we extend Peter Jones's travelling salesman theorem to general metric spaces.

Metric spaces with the small ball property

Ehrhard Behrends, Vladimir M. Kadets (2001)

Studia Mathematica

A metric space (M,d) is said to have the small ball property (sbp) if for every ε₀ > 0 it is possible to write M as the union of a sequence (B(xₙ,rₙ)) of closed balls such that the rₙ are smaller than ε₀ and lim rₙ = 0. We study permanence properties and examples of sbp. The main results of this paper are the following: 1. Bounded convex closed sets in Banach spaces have sbp only if they are compact. 2. Precisely the finite-dimensional Banach spaces have sbp. (More generally: a complete metric...

Currently displaying 161 – 180 of 453