On a family of dendrites.
In this paper, we give an affirmative answer to the problem posed by Y. Tanaka and Y. Ge (2006) in "Around quotient compact images of metric spaces, and symmetric spaces", Houston J. Math. 32 (2006) no. 1, 99-117.
We show that the Hilbert space is coarsely embeddable into any for 1 ≤ p ≤ ∞. It follows that coarse embeddability into ℓ₂ and into are equivalent for 1 ≤ p < 2.
We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.
In our note, we prove the result that the Hilbert’s cube equipped with metrics, , cannot be isometrically embedded into .