Page 1

Displaying 1 – 5 of 5

Showing per page

The Golomb space is topologically rigid

Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)

Commentationes Mathematicae Universitatis Carolinae

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

Topologies on groups determined by right cancellable ultrafilters

Igor V. Protasov (2009)

Commentationes Mathematicae Universitatis Carolinae

For every discrete group G , the Stone-Čech compactification β G of G has a natural structure of a compact right topological semigroup. An ultrafilter p G * , where G * = β G G , is called right cancellable if, given any q , r G * , q p = r p implies q = r . For every right cancellable ultrafilter p G * , we denote by G ( p ) the group G endowed with the strongest left invariant topology in which p converges to the identity of G . For any countable group G and any right cancellable ultrafilters p , q G * , we show that G ( p ) is homeomorphic to G ( q ) if and only if...

Two-fold theorem on Fréchetness of products

Szymon Dolecki, Tsugunori Nogura (1999)

Czechoslovak Mathematical Journal

A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.

Currently displaying 1 – 5 of 5

Page 1