Displaying 101 – 120 of 223

Showing per page

On a universality property of some abelian Polish groups

Su Gao, Vladimir Pestov (2003)

Fundamenta Mathematicae

We show that every abelian Polish group is the topological factor group of a closed subgroup of the full unitary group of a separable Hilbert space with the strong operator topology. It follows that all orbit equivalence relations induced by abelian Polish group actions are Borel reducible to some orbit equivalence relations induced by actions of the unitary group.

On continuous actions commutingwith actions of positive entropy

Mark Shereshevsky (1996)

Colloquium Mathematicae

Let F and G be finitely generated groups of polynomial growth with the degrees of polynomial growth d(F) and d(G) respectively. Let S = S f f F be a continuous action of F on a compact metric space X with a positive topological entropy h(S). Then (i) there are no expansive continuous actions of G on X commuting with S if d(G)

On countable dense and strong n-homogeneity

Jan van Mill (2011)

Fundamenta Mathematicae

We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.

On locally Lipschitz locally compact transformation groups of manifolds

A. A. George Michael (2007)

Archivum Mathematicum

In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.

Currently displaying 101 – 120 of 223