Fixed simplex property for retractable complexes.
Our main result states that every fixed-point free continuous self-map of ℝⁿ is colorable. This result can be reformulated as follows: A continuous map f: ℝⁿ → ℝⁿ is fixed-point free iff f̃: βℝⁿ → βℝⁿ is fixed-point free. We also obtain a generalization of this fact and present some examples
The aim of this paper is to construct a fractal with the help of a finite family of F− contraction mappings, a class of mappings more general than contraction mappings, defined on a complete metric space. Consequently, we obtain a variety of results for iterated function systems satisfying a different set of contractive conditions. Some examples are presented to support the results proved herein. Our results unify, generalize and extend various results in the existing literature.
In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is -Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to are dealt with in detail.
In this paper fixed point theorems for maps with nonempty convex values and having the local intersection property are given. As applications several minimax inequalities are obtained.