Monotonic mappings on ordered sets, a class of inequalities with finite differences and fixed points.
A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...
Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal...
The purpose of this paper is to derive new common fixed point theorems for a pair of mappings satisfying a more general weakly contractive condition with weaker control functions in a complete metric space. Applications to new fixed point results with conditions of integral type are also given. We furnish an example to demonstrate that these results improve the previously existing ones.
In 1959, Nikaidô established a remarkable coincidence theorem in a compact Hausdorff topological space, to generalize and to give a unified treatment to the results of Gale regarding the existence of economic equilibrium and the theorems in game problems. The main purpose of the present paper is to deduce several generalized key results based on this very powerful result, together with some KKM property. Indeed, we shall simplify and reformulate a few coincidence theorems on acyclic multifunctions,...
We investigate the fixed point property for tree-like continua that are unions of tree-like continua. We obtain a positive result if finitely many tree-like continua with the fixed point property have dendrites for pairwise intersections. Using Bellamy's seminal example, we define (i) a countable wedge X̂ of tree-like continua, each having the fpp, and X̂ admitting a fixed-point-free homeomorphism, and (ii) two tree-like continua H and K such that H, K, and H∩ K have the fixed point property, but...