The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 681 – 700 of 1040

Showing per page

On a generalization of a Greguš fixed point theorem

Ljubomir B. Ćirić (2000)

Czechoslovak Mathematical Journal

Let C be a closed convex subset of a complete convex metric space X . In this paper a class of selfmappings on C , which satisfy the nonexpansive type condition ( 2 ) below, is introduced and investigated. The main result is that such mappings have a unique fixed point.

On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces

Sehie Park (1996)

Commentationes Mathematicae Universitatis Carolinae

Let X be a uniformly convex Banach space, D X , f : D X a nonexpansive map, and K a closed bounded subset such that co ¯ K D . If (1) f | K is weakly inward and K is star-shaped or (2) f | K satisfies the Leray-Schauder boundary condition, then f has a fixed point in co ¯ K . This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.

Currently displaying 681 – 700 of 1040