A fixed point theorem for mappings satisfying a general contractive condition of integral type.
Branciari, A. (2002)
International Journal of Mathematics and Mathematical Sciences
El Moutawakil, Driss (2004)
Applied Mathematics E-Notes [electronic only]
T. D. Narang (2014)
Annales UMCS, Mathematica
A mapping T from a topological space X to a topological space Y is said to be compact if T(X) is contained in a compact subset of Y . The aim of this paper is to prove the existence of fixed points of a nonexpansive compact self-mapping defined on a closed subset having a contractive jointly continuous family when the underlying space is a metric space. The proved result generalizes and extends several known results on the subject
J. Matkowski, K. Baron (1973)
Publications de l'Institut Mathématique [Elektronische Ressource]
Bapurao Chandra Dhage (1999)
Commentationes Mathematicae Universitatis Carolinae
A fixed point theorem is proved for non-self multi-valued mappings in a metrically convex complete metric space satisfying a slightly stronger contraction condition than in Rhoades [3] and under a weaker boundary condition than in Itoh [2] and Rhoades [3].
Harold Bell (1978)
Fundamenta Mathematicae
K. Goebel, W. Kirk (1973)
Studia Mathematica
Razani, A., Nezhad, Z.Mazlumi, Boujary, M. (2009)
APPS. Applied Sciences
Won Kyu Kim (1995)
Commentationes Mathematicae Universitatis Carolinae
In this paper, we will give a new fixed point theorem for lower semicontinuous multimaps in a Hausdorff topological vector space.
Assad, Nadim A. (1990)
Publications de l'Institut Mathématique. Nouvelle Série
Cheh-Chih Yeh (1978)
Publications de l'Institut Mathématique
Ljubomir Ćirić (1984)
Publications de l'Institut Mathématique
Razani, A., Abbasbandy, Saeid (2006)
APPS. Applied Sciences
S. A. Husain, V. M. Sehgal (1977)
Publications de l'Institut Mathématique
S.A. Husain, V.M. Sehgal (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Charles L. Hagopian, Janusz R. Prajs (2005)
Fundamenta Mathematicae
We define an unusual continuum M with the fixed-point property in the plane ℝ². There is a disk D in ℝ² such that M ∩ D is an arc and M ∪ D does not have the fixed-point property. This example answers a question of R. H. Bing. The continuum M is a countable union of arcs.
Warren White (1973)
Fundamenta Mathematicae
Alexander Abian (1980)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Ljubomir Ćirić, Nikola Jotić (1998)
Matematički Vesnik
Abdelkader Stouti (2004)
Archivum Mathematicum
A fuzzy version of Tarski’s fixpoint Theorem for fuzzy monotone maps on nonempty fuzzy compete lattice is given.