On the existence and uniqueness of the solution of a non-linear functional equation of r-th order
Let and be closed subsets of [0,1] with a subset of the limit points of . Necessary and sufficient conditions are found for the existence of a continuous function such that is an -limit set for and is the set of fixed points of in .
Edelstein iterative test for j-contractive mappings in uniform spaces is established.
The paper contains a survey of various results concerning the Schauder Fixed Point Theorem for metric spaces both in single-valued and multi-valued cases. A number of open problems is formulated.
In this paper, we establish some stability results for the Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes in arbitrary Banach spaces. These results are proved for a pair of nonselfmappings using the Jungck–Mann, Jungck–Krasnoselskij and Jungck iterations. Our results are generalizations and extensions to a multitude of stability results in literature including those of Imoru and Olatinwo [8], Jungck [10], Berinde [1] and many others.
The aim of this paper is to introduce the concept of a new nonlinear multi-valued mapping so called weakly (α, ψ, ξ)-contractive mapping and prove fixed point results for such mappings in metric spaces. Our results unify, generalize and complement various results from the literature. We give some examples which support our main results while previous results in literature are not applicable. Also, we analyze the existence of fixed points for mappings satisfying a general contractive inequality of...