Displaying 181 – 200 of 560

Showing per page

Fixed points for positive permutation braids

Michał Misiurewicz, Ana Rodrigues (2012)

Fundamenta Mathematicae

Making use of the Nielsen fixed point theory, we study a conjugacy invariant of braids, which we call the level index function. We present a simple algorithm for computing it for positive permutation cyclic braids.

Fixed Points of n-Valued Multimaps of the Circle

Robert F. Brown (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

A multifunction ϕ: X ⊸ Y is n-valued if ϕ(x) is an unordered subset of n points of Y for each x ∈ X. The (continuous) n-valued multimaps ϕ: S¹ ⊸ S¹ are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number N(ϕ) of an n-valued ϕ: S¹ ⊸ S¹ of degree d equals |n - d| and ϕ is homotopic to an n-valued power map that has exactly |n - d| fixed points. Thus the Wecken property, that Schirmer established for manifolds...

Fixed points of set-valued maps with closed proximally ∞-connected values

Grzegorz Gabor (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Introduction Many authors have developed the topological degree theory and the fixed point theory for set-valued maps using homological techniques (see for example [19, 28, 27, 16]). Lately, an elementary technique of single-valued approximation (on the graph) (see [11, 1, 13, 5, 9, 2, 6, 7]) has been used in constructing the fixed point index for set-valued maps with compact values (see [21, 20, 4]). In [20, 4] authors consider set-valued upper semicontinuous...

Fixed points on Klein bottle fiber bundles over the circle

D. L. Gonçalves, D. Penteado, J. P. Vieira (2009)

Fundamenta Mathematicae

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S¹ for spaces which are fiber bundles over S¹ and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S¹ has been solved recently.

Fixed points on torus fiber bundles over the circle

D. L. Gonçalves, D. Penteado, J. P. Vieira (2004)

Fundamenta Mathematicae

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S¹ for spaces which are fibrations over S¹ and the fiber is the torus ,T. For the case where the fiber is a surface with nonpositive Euler characteristic, we establish general algebraic conditions, in terms of the fundamental group and the induced homomorphism, for the existence of a deformation of a map over S¹ to a fixed point free map. For the case where the fiber is a torus, we classify all maps over...

Currently displaying 181 – 200 of 560