Page 1

Displaying 1 – 2 of 2

Showing per page

Galois theory and Lubin-Tate cochains on classifying spaces

Andrew Baker, Birgit Richter (2011)

Open Mathematics

We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r , the cochain extension F ( B C p r + , E n ) F ( E C p r + , E n ) is not a Galois...

Currently displaying 1 – 2 of 2

Page 1