The Cohomology of the Morava Stabilizer Algebras.
We study the properties of the connective K-theory with Z2 coefficients of the Lie groups Spin(n). This generalises some work by L. Hodgkin.
This paper provides universal upper bounds for the exponent of the kernel and of the cokernel of the classical Boardman homomorphism b n: π n(X)→H n(H;ℤ), from the cohomotopy groups to the ordinary integral cohomology groups of a spectrum X, and of its various generalizations π n(X)→E n(X), F n(X)→(E∧F)n(X), F n(X)→H n(X;π 0 F) and F n(X)→H n+t(X;π t F) for other cohomology theories E *(−) and F *(−). These upper bounds do not depend on X and are given in terms of the exponents of the stable homotopy...
Using the path lattice cohomology we provide a conceptual topological characterization of the geometric genus for certain complex normal surface singularities with rational homology sphere links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface singularities.
Let M be a closed orientable manifold of dimension dand be the usual cochain algebra on M with coefficients in a fieldk. The Hochschild cohomology of M, is a graded commutative and associative algebra. The augmentation map induces a morphism of algebras . In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of , which is in general quite small. The algebra is expected to be isomorphic...