Page 1

Displaying 1 – 1 of 1

Showing per page

A complement to the theory of equivariant finiteness obstructions

Paweł Andrzejewski (1996)

Fundamenta Mathematicae

It is known ([1], [2]) that a construction of equivariant finiteness obstructions leads to a family w α H ( X ) of elements of the groups K 0 ( [ π 0 ( W H ( X ) ) α * ] ) . We prove that every family w α H of elements of the groups K 0 ( [ π 0 ( W H ( X ) ) α * ] ) can be realized as the family of equivariant finiteness obstructions w α H ( X ) of an appropriate finitely dominated G-complex X. As an application of this result we show the natural equivalence of the geometric construction of equivariant finiteness obstruction ([5], [6]) and equivariant generalization of Wall’s obstruction...

Currently displaying 1 – 1 of 1

Page 1