Higher cospans and weak cubical categories (cospans in algebraic topology. I).
On construit une suite spectrale qui converge vers le bigradué associé à une filtration convenable des groupes d’homotopie du monoïde simplicial des équivalences d’homotopie fibrées d’un fibré de Kan dans lui-même. On obtient de nouveaux calculs de ces groupes. En particulier, on calcule le groupe des classes d’homotopie des équivalences d’homotopie d’un espace ayant trois groupes d’homotopie non nuls en dessous de sa dimension.
The purpose of this paper is to present certain facts and results showing a way through which simplicial homotopy theory can be used in the study of Auslander-Goldman-Brauer groups of Azumaya algebras over commutative rings.