The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that each non-separable completely metrizable convex subset of a Fréchet space is homeomorphic to a Hilbert space. This resolves a more than 30 years old problem of infinite-dimensional topology. Combined with the topological classification of separable convex sets due to Klee, Dobrowolski and Toruńczyk, this result implies that each closed convex subset of a Fréchet space is homeomorphic to for some cardinals 0 ≤ n ≤ ω, 0 ≤ m ≤ 1 and κ ≥ 0.
We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: , , , , or , where and . In particular, the Schwartz space D’ of distributions is homeomorphic to . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either...
Let X be a topological group or a convex set in a linear metric space. We prove that X is homeomorphic to (a manifold modeled on) an infinite-dimensional Hilbert space if and only if X is a completely metrizable absolute (neighborhood) retract with ω-LFAP, the countable locally finite approximation property. The latter means that for any open cover
of X there is a sequence of maps (f n: X → X)nεgw such that each f n is
-near to the identity map of X and the family f n(X)n∈ω is locally finite...
Currently displaying 1 –
4 of
4