Ein kombinatorisches Analogon zum Satz von Gauss-Bonnet.
Let be a topological group. We give the existence of an equivariant homology and cohomology theory, defined on the category of all -pairs and -maps, which both satisfy all seven equivariant Eilenberg-Steenrod axioms and have a given covariant and contravariant, respectively, coefficient system as coefficients.In the case that is a compact Lie group we also define equivariant -complexes and mention some of their basic properties.The paper is a short abstract and contains no proofs.
Complexes of groups over ordered simplicial complexes are generalizations to higher dimensions of graphs of groups. We first relate them to complexes of spaces by considering their classifying space . Then we develop their homological algebra aspects. We define the notions of homology and cohomology of a complex of groups with coefficients in a -module and show the existence of free resolutions. We apply those notions to study extensions of complexes of groups with constant or abelian kernel....