Page 1 Next

Displaying 1 – 20 of 507

Showing per page

A characterization of 2-knots groups.

Francisco González-Acuña (1994)

Revista Matemática Iberoamericana

A n-knot group is the fundamental group of the complement of an n-sphere smoothly embedded in Sn+2. Artin gave in 1925 ([A]) an algebraic characterization of 1-knot groups. M. Kervaire gave in 1965 ([K]) an algebraic characterization of n-knot groups for n ≥ 3. The problem of characterizing algebraically 2-knot groups has been posed several times (see for example [Su, Problem 4.7]). Ribbon 2-knot groups have been characterized algebraically by Yajima [Y].We will give here a characterization of 2-knot...

A complement to the theory of equivariant finiteness obstructions

Paweł Andrzejewski (1996)

Fundamenta Mathematicae

It is known ([1], [2]) that a construction of equivariant finiteness obstructions leads to a family w α H ( X ) of elements of the groups K 0 ( [ π 0 ( W H ( X ) ) α * ] ) . We prove that every family w α H of elements of the groups K 0 ( [ π 0 ( W H ( X ) ) α * ] ) can be realized as the family of equivariant finiteness obstructions w α H ( X ) of an appropriate finitely dominated G-complex X. As an application of this result we show the natural equivalence of the geometric construction of equivariant finiteness obstruction ([5], [6]) and equivariant generalization of Wall’s obstruction...

Currently displaying 1 – 20 of 507

Page 1 Next