Embedding, compression and fiberwise homotopy theory.
For any collection of graphs we find the minimal dimension d such that the product is embeddable into (see Theorem 1 below). In particular, we prove that (K₅)ⁿ and are not embeddable into , where K₅ and are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding , where O is a vertex of (K₅)ⁿ, has a pair of linked (n-1)-spheres.
We show that the proper homotopy type of any properly c-connected locally finite n-dimensional CW-complex is represented by a closed polyhedron in (Theorem I). The case n - c ≥ 3 is a special case of a general proper homotopy embedding theorem (Theorem II). For n - c ≤ 2 we need some basic properties of “proper” algebraic topology which are summarized in Appendices A and B. The results of this paper are the proper analogues of classical results by Stallings [17] and Wall [20] for finite CW-complexes;...