A local analytic splitting of the holonomy map on flat connections.
We consider the Einstein deformations of the reducible rank two symmetric spaces of noncompact type. If is the product of any two real, complex, quaternionic or octonionic hyperbolic spaces, we prove that the family of nearby Einstein metrics is parametrized by certain new geometric structures on the Furstenberg boundary of .
Let be a surface with a symplectic form, let be a symplectomorphism of , and let be the mapping torus of . We show that the dimensions of moduli spaces of embedded pseudoholomorphic curves in , with cylindrical ends asymptotic to periodic orbits of or multiple covers thereof, are bounded from above by an additive relative index. We deduce some compactness results for these moduli spaces. This paper establishes some of the foundations for a program with Michael Thaddeus, to understand...
We study doubly-periodic instantons, i.e. instantons on the product of a 1-dimensional complex torus with a complex line , with quadratic curvature decay. We determine the asymptotic behaviour of these instantons, constructing new asymptotic invariants. We show that the underlying holomorphic bundle extends to . The converse statement is also true, namely a holomorphic bundle on which is flat on the torus at infinity, and satisfies a stability condition, comes from a doubly-periodic instanton....