Previous Page 2

Displaying 21 – 37 of 37

Showing per page

The versality discriminant and local topological equivalence of mappings

James Damon (1990)

Annales de l'institut Fourier

We will extend the infinitesimal criteria for the equisingularity (i.e. topological triviality) of deformations f of germs of mappings f 0 : k s , 0 k t , 0 to non-finitely determined germs (these occur generically outside the “nice dimensions” for Mather, even among topologically stable mappings). The failure of finite determinacy is described geometrically by the “versality discriminant”, which is the set of points where f 0 is not stable (i.e. viewed as an unfolding it is not versal). The criterion asserts that...

Thom polynomials for open Whitney umbrellas of isotropic mappings

Toru Ohmoto (1996)

Banach Center Publications

A smooth mapping f : L n ( M 2 n , ω ) of a smooth n-dimensional manifold L into a smooth 2n-dimensional symplectic manifold (M,ω) is called isotropic if f*ω vanishes. In the last ten years, the local theory of singularities of isotropic mappings has been rapidly developed by Arnol’d, Givental’ and several authors, while it seems that the global theory of their singularities has not been well studied except for the work of Givental’ [G1] in the case of dimension 2 (cf. [A], [Au], [I2], [I-O]). In the present paper,...

Topological invariants of isolated complete intersection curve singularities

V. H. Jorge Pérez, M. E. Hernandes (2009)

Czechoslovak Mathematical Journal

In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.

Topological triviality of versal unfoldings of complete intersections

James Damon (1984)

Annales de l'institut Fourier

We obtain algebraic and geometric conditions for the topological triviality of versal unfoldings of weighted homogeneous complete intersections along subspaces corresponding to deformations of maximal weight. These results are applied: to infinite families of surface singularities in C 4 which begin with the exceptional unimodular singularities, to the intersection of pairs of generic quadrics, and to certain curve singularities.The algebraic conditions are related to the operation of adjoining powers,...

Currently displaying 21 – 37 of 37

Previous Page 2