The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Bernoulli sequences and Borel measurability in ( 0 , 1 )

Petr Veselý (1993)

Commentationes Mathematicae Universitatis Carolinae

The necessary and sufficient condition for a function f : ( 0 , 1 ) [ 0 , 1 ] to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map H : { 0 , 1 } { 0 , 1 } such that ( H ( X p ) ) = ( X 1 / 2 ) holds for each p ( 0 , 1 ) , where X p = ( X 1 p , X 2 p , ... ) denotes Bernoulli sequence of random variables with P [ X i p = 1 ] = p .

Between logic and probability.

Ton Sales (1994)

Mathware and Soft Computing

Logic and Probability, as theories, have been developed quite independently and, with a few exceptions (like Boole's), have largely ignored each other. And nevertheless they share a lot of similarities, as well a considerable common ground. The exploration of the shared concepts and their mathematical treatment and unification is here attempted following the lead of illustrious researchers (Reichenbach, Carnap, Popper, Gaifman, Scott & Krauss, Fenstad, Miller, David Lewis, Stalnaker, Hintikka...

Currently displaying 1 – 5 of 5

Page 1