Page 1

Displaying 1 – 11 of 11

Showing per page

Dependence Measuring from Conditional Variances

Noppadon Kamnitui, Tippawan Santiwipanont, Songkiat Sumetkijakan (2015)

Dependence Modeling

A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s...

Dynamic dependence ordering for Archimedean copulas and distorted copulas

Arthur Charpentier (2008)

Kybernetika

This paper proposes a general framework to compare the strength of the dependence in survival models, as time changes, i. e. given remaining lifetimes X , to compare the dependence of X given X > t , and X given X > s , where s > t . More precisely, analytical results will be obtained in the case the survival copula of X is either Archimedean or a distorted copula. The case of a frailty based model will also be discussed in details.

Currently displaying 1 – 11 of 11

Page 1