On the local limit theorem for general lattice distribution.
This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.
For p ≤ n, let b1(n),...,bp(n) be independent random vectors in with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...