Radius and profile of random planar maps with faces of arbitrary degrees.
Our purpose is the study of the so called mixed random mosaics, formed by superposition of a given tesellation, not random, of congruent convex polygons and a homogeneous Poisson line process. We give the mean area, the mean perimeter and the mean number of sides of the polygons into which such mosaics divide the plane.
We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.