Page 1

Displaying 1 – 17 of 17

Showing per page

Necessary and sufficient conditions for weak convergence of random sums of independent random variables

Andrzej Krajka, Zdzisław Rychlik (1993)

Commentationes Mathematicae Universitatis Carolinae

Let { X n , n 1 } be a sequence of independent random variables such that E X n = a n , E ( X n - a n ) 2 = σ n 2 , n 1 . Let { N n , n 1 } be a sequence od positive integer-valued random variables. Let us put S N n = k = 1 N n X k , L n = k = 1 n a k , s n 2 = k = 1 n σ k 2 , n 1 . In this paper we present necessary and sufficient conditions for weak convergence of the sequence { ( S N n - L n ) / s n , n 1 } , as n . The obtained theorems extend the main result of M. Finkelstein and H.G. Tucker (1989).

New Examples of Convolutions and Non-Commutative Central Limit Theorems

Marek Bożejko, Janusz Wysoczański (1998)

Banach Center Publications

A family of transformations on the set of all probability measures on the real line is introduced, which makes it possible to define new examples of convolutions. The associated central limit theorems are studied, and examples of the limit measures, related to the classical, free and boolean convolutions, are shown.

New metrics for weak convergence of distribution functions.

Michael D. Taylor (1985)

Stochastica

Sibley and Sempi have constructed metrics on the space of probability distribution functions with the property that weak convergence of a sequence is equivalent to metric convergence. Sibley's work is a modification of Levy's metric, but Sempi's construction is of a different sort. Here we construct a family of metrics having the same convergence properties as Sibley's and Sempi's but which does not appear to be related to theirs in any simple way. Some instances are brought out in which the metrics...

Nouveaux résultats sur les petites perturbations d’équations d’évolutions aléatoires

Lyliane Irène Rajaonarison, Toussaint Joseph Rabeherimanana (2012)

Annales mathématiques Blaise Pascal

Dans cet article, nous étudions les résultats de grandes déviations associés au couple ( X ε , ν ε ) , solution de l’E.D.S. interprétée au sens d’Itô : d X t ε = ε σ ν ε ( t ) ( X t ε ) d W t + b ν ε ( t ) ( X t ε ) d t ; X 0 ε = x d avec des conditions assez générales sur les coefficients et dans les deux cas suivants :Premier cas : ν ε est indépendant du mouvement brownien W et satisfait à un principe de grandes déviations ;Deuxième cas : ν ε est un processus markovien avec un nombre fini d’états { 1 , . . . , n } vérifiant { ν ε ( t + Δ ) = j / ν ε ( t ) = i , X ε ( t ) = x } = d i j ( x ) Δ + o ( Δ ) uniformément dans d pourvu que Δ 0 , 1 i , j n , i j .Ces résultats sont des extensions de ceux de Bezuidenhout...

Currently displaying 1 – 17 of 17

Page 1