Displaying 41 – 60 of 188

Showing per page

Entropic Projections and Dominating Points

Christian Léonard (2010)

ESAIM: Probability and Statistics

Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations...

Genealogies of regular exchangeable coalescents with applications to sampling

Vlada Limic (2012)

Annales de l'I.H.P. Probabilités et statistiques

This article considers a model of genealogy corresponding to a regular exchangeable coalescent (also known as 𝛯 -coalescent) started from a large finite configuration, and undergoing neutral mutations. Asymptotic expressions for the number of active lineages were obtained by the author in a previous work. Analogous results for the number of active mutation-free lineages and the combined lineage lengths are derived using the same martingale-based technique. They are given in terms of convergence in...

LAMN property for hidden processes : the case of integrated diffusions

Arnaud Gloter, Emmanuel Gobet (2008)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we prove the Local Asymptotic Mixed Normality (LAMN) property for the statistical model given by the observation of local means of a diffusion process X. Our data are given by ∫01X(s+i)/n dμ(s) for i=0, …, n−1 and the unknown parameter appears in the diffusion coefficient of the process X only. Although the data are neither markovian nor gaussian we can write down, with help of Malliavin calculus, an explicit expression for the log-likelihood of the model, and then study the asymptotic...

Currently displaying 41 – 60 of 188