Page 1

Displaying 1 – 4 of 4

Showing per page

Unique Bernoulli g -measures

Anders Johansson, Anders Öberg, Mark Pollicott (2012)

Journal of the European Mathematical Society

We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a g -measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique g -measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the g -measure.

Uniqueness of a martingale-coboundary decomposition of stationary processes

Pavel Samek, Dalibor Volný (1992)

Commentationes Mathematicae Universitatis Carolinae

In the limit theory for strictly stationary processes f T i , i , the decomposition f = m + g - g T proved to be very useful; here T is a bimeasurable and measure preserving transformation an ( m T i ) is a martingale difference sequence. We shall study the uniqueness of the decomposition when the filtration of ( m T i ) is fixed. The case when the filtration varies is solved in [13]. The necessary and sufficient condition of the existence of the decomposition were given in [12] (for earlier and weaker versions of the results see [7])....

Currently displaying 1 – 4 of 4

Page 1