Page 1

Displaying 1 – 11 of 11

Showing per page

Density estimation for one-dimensional dynamical systems

Clémentine Prieur (2001)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Density Estimation for One-Dimensional Dynamical Systems

Clémentine Prieur (2010)

ESAIM: Probability and Statistics

In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

Detection of transient change in mean – a linear behavior inside epidemic interval

Daniela Jarušková (2011)

Kybernetika

A procedure for testing occurrance of a transient change in mean of a sequence is suggested where inside an epidemic interval the mean is a linear function of time points. Asymptotic behavior of considered trimmed maximum-type test statistics is presented. Approximate critical values are obtained using an approximation of exceedance probabilities over a high level by Gaussian fields with a locally stationary structure.

Currently displaying 1 – 11 of 11

Page 1