Page 1

Displaying 1 – 6 of 6

Showing per page

Inferring the residual waiting time for binary stationary time series

Gusztáv Morvai, Benjamin Weiss (2014)

Kybernetika

For a binary stationary time series define σ n to be the number of consecutive ones up to the first zero encountered after time n , and consider the problem of estimating the conditional distribution and conditional expectation of σ n after one has observed the first n outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal process with zero the renewal state...

Intertwining of birth-and-death processes

Jan M. Swart (2011)

Kybernetika

It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues,...

Currently displaying 1 – 6 of 6

Page 1