On homogenization of non-divergence form partial difference equations.
We consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.
We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order with drift and diffusion coefficients , . When , we investigate pathwise uniqueness for this equation. When , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether or and on whether the driving stable process is symmetric or not. Our assumptions...
In this note we provide a probabilistic proof that Poisson and/or Dirichlet problems in an ellipsoid in Rd, that have polynomial data, also have polynomial solutions. Our proofs use basic stochastic calculus. The existing proofs are based on famous lemma by E. Fisher which we do not use, and present a simple martingale proof of it as well.
We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture...
We are concerned with the optimal control of a nonlinear stochastic heat equation on a bounded real interval with Neumann boundary conditions. The specificity here is that both the control and the noise act on the boundary. We start by reformulating the state equation as an infinite dimensional stochastic evolution equation. The first main result of the paper is the proof of existence and uniqueness of a mild solution for the corresponding Hamilton-Jacobi-Bellman (HJB) equation. The C1 regularity...
The goal of this paper is to make an attempt to generalise the model of pricing European options with an illiquid underlying asset considered by Rogers and Singh (2010). We assume that an investor's decisions have only a temporary effect on the price, which is proportional to the square of the change of the number of asset units in the investor's portfolio. We also assume that the underlying asset price follows a CEV model. To prove existence and uniqueness of the solution, we use techniques similar...
We show how to use the Gaussian HJM model to price modified forward-start options. Using data from the Polish market we calibrate the model and price this exotic option on the term structure. The specific problems of Central Eastern European emerging markets do not permit the use of the popular lognormal models of forward LIBOR or swap rates. We show how to overcome this difficulty.
We show how to use the Gaussian HJM model to price Polish three-year bonds. %A bond issued by A Polish Treasury bond is treated as a risk-free security.
A model of vortex filaments based on stochastic processes is presented. In contrast to previous models based on semimartingales, here processes with fractal properties between and are used, which include fractional Brownian motion and similar non-Gaussian examples. Stochastic integration for these processes is employed to give a meaning to the kinetic energy.