De Rham-Hodge-Kodaira decomposition in ...-dimensions.
Dans ce travail, nous définissons et étudions la notion de “différentiabilité stochastique” d’une fonction définie sur un ouvert fin d’une variété riemannienne de dimension finie. Nous démontrons ensuite qu’une fonction admettant une “suite d’approximation forte” est, quasi-partout, stochastiquement indéfiniment différentiable et nous appliquons ces résultats à une classe de fonctions finement harmoniques.
We consider multi-dimensional gaussian processes and give a new condition on the covariance, simple and sharp, for the existence of Lévy area(s). gaussian rough paths are constructed with a variety of weak and strong approximation results. Together with a new RKHS embedding, we obtain a powerful – yet conceptually simple – framework in which to analyze differential equations driven by gaussian signals in the rough paths sense.
We give a complete analytical characterization of the functions transforming reflected Brownian motions to local Dirichlet processes.