Page 1

Displaying 1 – 7 of 7

Showing per page

Central limit theorem for hitting times of functionals of Markov jump processes

Christian Paroissin, Bernard Ycart (2004)

ESAIM: Probability and Statistics

A sample of i.i.d. continuous time Markov chains being defined, the sum over each component of a real function of the state is considered. For this functional, a central limit theorem for the first hitting time of a prescribed level is proved. The result extends the classical central limit theorem for order statistics. Various reliability models are presented as examples of applications.

Central limit theorem for hitting times of functionals of Markov jump processes

Christian Paroissin, Bernard Ycart (2010)

ESAIM: Probability and Statistics

A sample of i.i.d. continuous time Markov chains being defined, the sum over each component of a real function of the state is considered. For this functional, a central limit theorem for the first hitting time of a prescribed level is proved. The result extends the classical central limit theorem for order statistics. Various reliability models are presented as examples of applications.

Correlation asymptotics from large deviations in dynamical systems with infinite measure

Sébastien Gouëzel (2011)

Colloquium Mathematicae

We extend a result of Doney [Probab. Theory Related Fields 107 (1997)] on renewal sequences with infinite mean to renewal sequences of operators. As a consequence, we get precise asymptotics for the transfer operator and for correlations in dynamical systems preserving an infinite measure (including intermittent maps with an arbitrarily neutral fixed point).

Currently displaying 1 – 7 of 7

Page 1