Page 1

Displaying 1 – 4 of 4

Showing per page

New estimates and tests of independence in semiparametric copula models

Salim Bouzebda, Amor Keziou (2010)

Kybernetika

We introduce new estimates and tests of independence in copula models with unknown margins using φ -divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior or a boundary value of the parameter space. Simulation results show that the choice of χ 2 -divergence has good properties in terms of efficiency-robustness.

Notion of information and independent component analysis

Una Radojičić, Klaus Nordhausen, Hannu Oja (2020)

Applications of Mathematics

Partial orderings and measures of information for continuous univariate random variables with special roles of Gaussian and uniform distributions are discussed. The information measures and measures of non-Gaussianity including the third and fourth cumulants are generally used as projection indices in the projection pursuit approach for the independent component analysis. The connections between information, non-Gaussianity and statistical independence in the context of independent component analysis...

Nuevas medidas de información paramétricas reales basadas en la matriz de Fisher.

Agustín Turrero Nogués (1989)

Trabajos de Estadística

Se proponen en este trabajo nuevos funcionales reales de la matriz de información de Fisher como medidas de información paramétricas. Se analizan las propiedades de dichas medidas. Se presenta un método sencillo, basado en la matriz de Fisher, para obtener medidas de información paramétricas reales con la propiedad de invariancia bajo transformaciones biyectivas del espacio paramétrico.

Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime

Antoine Chambaz, Catherine Matias (2009)

ESAIM: Probability and Statistics

This paper deals with order identification for Markov chains with Markov regime (MCMR) in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number k of states of the hidden Markov chain and the memory m of the conditional Markov chain. We study the properties of penalized maximum likelihood estimators for the unknown order (k, m) of an observed MCMR process, relying on information theoretic arguments. The novelty of our work relies in the joint...

Currently displaying 1 – 4 of 4

Page 1