Displaying 41 – 60 of 88

Showing per page

Minimax Prediction for the Multinomial and Multivariate Hypergeometric Distributions

Alicja Jokiel-Rokita (1998)

Applicationes Mathematicae

A problem of minimax prediction for the multinomial and multivariate hypergeometric distribution is considered. A class of minimax predictors is determined for estimating linear combinations of the unknown parameter and the random variable having the multinomial or the multivariate hypergeometric distribution.

Minimax prediction under random sample size

Alicja Jokiel-Rokita (2002)

Applicationes Mathematicae

A class of minimax predictors of random variables with multinomial or multivariate hypergeometric distribution is determined in the case when the sample size is assumed to be a random variable with an unknown distribution. It is also proved that the usual predictors, which are minimax when the sample size is fixed, are not minimax, but they remain admissible when the sample size is an ancillary statistic with unknown distribution.

Minimax theorems with applications to convex metric spaces

Jürgen Kindler (1995)

Colloquium Mathematicae

A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.

Modified minimax quadratic estimation of variance components

Viktor Witkovský (1998)

Kybernetika

The paper deals with modified minimax quadratic estimation of variance and covariance components under full ellipsoidal restrictions. Based on the, so called, linear approach to estimation variance components, i. e. considering useful local transformation of the original model, we can directly adopt the results from the linear theory. Under normality assumption we can can derive the explicit form of the estimator which is formally find to be the Kuks–Olman type estimator.

Numerical methods for linear minimax estimation

Norbert Gaffke, Berthold Heiligers (2000)

Discussiones Mathematicae Probability and Statistics

We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

On decision-making in possibility theory

Jiřina Vejnarová (2015)

Kybernetika

We present an alternative approach to decision-making in the framework of possibility theory, based on the idea of decision-making under uncertainty. We utilize the fact, that any possibility distribution can be viewed as an upper envelope of a set of probability distributions to which well-known minimax principle is applicable. Finally, we recall also an alternative to the minimax rule, so-called local minimax principle. Local minimax principle not only allows sequential construction of decision...

On minimax sequential procedures for exponential families of stochastic processes

Ryszard Magiera (1998)

Applicationes Mathematicae

The problem of finding minimax sequential estimation procedures for stochastic processes is considered. It is assumed that in addition to the loss associated with the error of estimation a cost of observing the process is incurred. A class of minimax sequential procedures is derived explicitly for a one-parameter exponential family of stochastic processes. The minimax sequential procedures are presented in some special models, in particular, for estimating a parameter of exponential families of...

Currently displaying 41 – 60 of 88