Displaying 21 – 40 of 43

Showing per page

On quasi-homogeneous copulas

Gaspar Mayor, Radko Mesiar, Joan Torrens (2008)

Kybernetika

Quasi-homogeneity of copulas is introduced and studied. Quasi-homogeneous copulas are characterized by the convexity and strict monotonicity of their diagonal sections. As a by-product, a new construction method for copulas when only their diagonal section is known is given.

On some Mixture Distributions

Nakhi, Y. Ben, Kalla, S.L. (2004)

Fractional Calculus and Applied Analysis

The aim of this paper is to establish some mixture distributions that arise in stochastic processes. Some basic functions associated with the probability mass function of the mixture distributions, such as k-th moments, characteristic function and factorial moments are computed. Further we obtain a three-term recurrence relation for each established mixture distribution.

On the Bayes estimators of the parameters of inflated modified power series distributions

Małgorzata Murat, Dominik Szynal (2000)

Discussiones Mathematicae Probability and Statistics

In this paper, we study the class of inflated modified power series distributions (IMPSD) where inflation occurs at any of support points. This class includes among others the generalized Poisson,the generalized negative binomial and the lost games distributions. We derive the Bayes estimators of parameters for these distributions when a parameter of inflation is known. First, we take as the prior distribution the uniform, Beta and Gamma distribution. In the second part of this paper, the prior...

On the convergence of the Bhattacharyya bounds in the multiparametric case

Abdulghani Alharbi (1994)

Applicationes Mathematicae

Shanbhag (1972, 1979) showed that the diagonality of the Bhattacharyya matrix characterizes the set of normal, Poisson, binomial, negative binomial, gamma or Meixner hypergeometric distributions. In this note, using Shanbhag's techniques, we show that if a certain generalized version of the Bhattacharyya matrix is diagonal, then the bivariate distribution is either normal, Poisson, binomial, negative binomial, gamma or Meixner hypergeometric. Bartoszewicz (1980) extended the result of Blight and...

On the density of some Wiener functionals: an application of Malliavin calculus.

Antoni Sintes Blanc (1992)

Publicacions Matemàtiques

Using a representation as an infinite linear combination of chi-square independent random variables, it is shown that some Wiener functionals, appearing in empirical characteristic process asymptotic theory, have densities which are tempered in the properly infinite case and exponentially decaying in the finite case.

On the Heyde theorem for discrete Abelian groups

G. M. Feldman (2006)

Studia Mathematica

Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy β α - 1 ± β α - 1 A u t ( X ) . Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue...

On the Lukacs property for free random variables

Kamil Szpojankowski (2015)

Studia Mathematica

The Lukacs property of the free Poisson distribution is studied. We prove that if free and are free Poisson distributed with suitable parameters, then + and ( + ) - 1 / 2 ( + ) - 1 / 2 are free. As an auxiliary result we compute the joint cumulants of and - 1 for free Poisson distributed . We also study the Lukacs property of the free Gamma distribution.

Currently displaying 21 – 40 of 43