Displaying 61 – 80 of 320

Showing per page

Asymptotic normality and efficiency of variance components estimators with high breakdown points

Christine H. Müller (2000)

Discussiones Mathematicae Probability and Statistics

For estimating the variance components of a one-way random effect model recently Uhlig (1995, 1997) and Lischer (1996) proposed non-iterative estimators with high breakdown points. These estimators base on the high breakdown point scale estimators of Rousseeuw and Croux (1992, 1993), which they called Q-estimators. In this paper the asymptotic normal distribution of the new variance components estimators is derived so that the asymptotic efficiency of these estimators can be compared with that of...

Asymptotic normality in mixture models

Sara Van De Geer (2010)

ESAIM: Probability and Statistics

We study the estimation of a linear integral functional of a distribution F, using i.i.d. observations which density is a mixture of a family of densities k(.,y) under F. We examine the asymptotic distribution of the estimator obtained by plugging the non parametric maximum likelihood estimator (NPMLE) of F in the functional. A problem here is that usually, the NPMLE does not dominate F.
Our main aim here is to show that this can be overcome by considering a convex combination of F and the...

Asymptotic normality of multivariate linear rank statistics under general alternatives

James A. Koziol (1979)

Aplikace matematiky

Let X j , 1 j N , be independent random p -vectors with respective continuous cumulative distribution functions F j 1 j N . Define the p -vectors R j by setting R i j equal to the rank of X i j among X i j , ... , X i N , 1 i p , 1 j N . Let a ( N ) ( . ) denote a multivariate score function in R p , and put S = j = 1 N c j a ( N ) ( R j ) , the c j being arbitrary regression constants. In this paper the asymptotic distribution of S is investigated under various sets of conditions on the constants, the score functions, and the underlying distribution functions. In particular, asymptotic normality of S is established...

Asymptotic rate of convergence in the degenerate U-statistics of second order

Olga Yanushkevichiene (2010)

Banach Center Publications

Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type T ( X , . . . , X ) = n - 1 1 i L e t q i ( i 1 ) b e e i g e n v a l u e s o f t h e H i l b e r t - S c h m i d t o p e r a t o r a s s o c i a t e d w i t h t h e k e r n e l h ( x , y ) , a n d q b e t h e l a r g e s t i n a b s o l u t e v a l u e o n e . W e p r o v e t h a t Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12) , where G i , 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and β ' : = E | h ( X , X ) | ³ + E | h ( X , X ) | 18 / 5 + E | g ( X ) | ³ + E | g ( X ) | 18 / 5 + 1 < .

Asymptotic study of canonical correlation analysis: from matrix and analytic approach to operator and tensor approach.

Jeanne Fine (2003)

SORT

Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach, Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free,...

Asymptotically normal confidence intervals for a determinant in a generalized multivariate Gauss-Markoff model

Wiktor Oktaba (1995)

Applications of Mathematics

By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant | σ 2 | in the MGM model ( U , X B , σ 2 V ) , > 0 , scalar σ 2 > 0 , with a matrix V 0 . A known n × p random matrix U has the expected value E ( U ) = X B , where the n × d matrix X is a known matrix of an experimental design, B is an unknown d × p matrix of parameters and σ 2 V is the covariance matrix of U , being the symbol of the Kronecker...

Asymptotics for weakly dependent errors-in-variables

Michal Pešta (2013)

Kybernetika

Linear relations, containing measurement errors in input and output data, are taken into account in this paper. Parameters of these so-called errors-in-variables (EIV) models can be estimated by minimizing the total least squares (TLS) of the input-output disturbances. Such an estimate is highly non-linear. Moreover in some realistic situations, the errors cannot be considered as independent by nature. Weakly dependent ( α - and ϕ -mixing) disturbances, which are not necessarily stationary nor identically...

Bayesian like R- and M- estimators of change points

Jaromír Antoch, Marie Husková (2000)

Discussiones Mathematicae Probability and Statistics

The purpose of this paper is to study Bayesian like R- and M-estimators of change point(s). These estimators have smaller variance than the related argmax type estimators. Confidence intervals for the change point based on the exchangeability arguments are constructed. Finally, theoretical results are illustrated on the real data set.

Currently displaying 61 – 80 of 320