Page 1

Displaying 1 – 18 of 18

Showing per page

Central limit theorems for eigenvalues in a spiked population model

Zhidong Bai, Jian-Feng Yao (2008)

Annales de l'I.H.P. Probabilités et statistiques

In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). This model is proposed by Johnstone to cope with empirical findings on various data sets. The question is to quantify the effect of the perturbation caused by the spike eigenvalues. A recent work by Baik and Silverstein establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the...

Change point detection in vector autoregression

Zuzana Prášková (2018)

Kybernetika

In the paper a sequential monitoring scheme is proposed to detect instability of parameters in a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-likelihood scores and the quasi-maximum likelihood estimators of the respective parameters computed from a training sample, and it is designed so that the sequential test has a small probability of a false alarm and asymptotic power one as the size of the training sample is sufficiently large. The asymptotic...

Change-point estimator in continuous quadratic regression

Daniela Jarušková (2001)

Commentationes Mathematicae Universitatis Carolinae

The paper deals with the asymptotic distribution of the least squares estimator of a change point in a regression model where the regression function has two phases --- the first linear and the second quadratic. In the case when the linear coefficient after change is non-zero the limit distribution of the change point estimator is normal whereas it is non-normal if the linear coefficient is zero.

Change-point estimator in gradually changing sequences

Daniela Jarušková (1998)

Commentationes Mathematicae Universitatis Carolinae

Recently Hušková (1998) has studied the least squares estimator of a change-point in gradually changing sequence supposing that the sequence increases (or decreases) linearly after the change-point. The present paper shows that the limit behavior of the change-point estimator for more complicated gradual changes is similar. The limit variance of the estimator can be easily calculated from the covariance function of a limit process.

Comparison between two types of large sample covariance matrices

Guangming Pan (2014)

Annales de l'I.H.P. Probabilités et statistiques

Let { X i j } , i , j = , be a double array of independent and identically distributed (i.i.d.) real random variables with E X 11 = μ , E | X 11 - μ | 2 = 1 and E | X 11 | 4 l t ; . Consider sample covariance matrices (with/without empirical centering) 𝒮 = 1 n j = 1 n ( 𝐬 j - 𝐬 ¯ ) ( 𝐬 j - 𝐬 ¯ ) T and 𝐒 = 1 n j = 1 n 𝐬 j 𝐬 j T , where 𝐬 ¯ = 1 n j = 1 n 𝐬 j and 𝐬 j = 𝐓 n 1 / 2 ( X 1 j , ... , X p j ) T with ( 𝐓 n 1 / 2 ) 2 = 𝐓 n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of 𝒮 and 𝐒 are different as n with p / n approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior...

Convergencia del vector de probabilidad a posteriori bajo una distribución predictiva.

Julián de la Horra (1986)

Trabajos de Estadística

La convergencia casi segura de una sucesión de variables aleatorias, con respecto a PX,Q (distribución predictiva), se estudia en relación con la convergencia casi segura, con respecto a PX,θ (para todo θ ∈ Θ), donde {PX,θ}θ ∈ Θ es una familia de modelos de probabilidad sobre el espacio muestral χ.Como consecuencia, se estudia la convergencia casi segura del vector de probabilidad a posteriori con respecto a PX,Q.

Currently displaying 1 – 18 of 18

Page 1